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ABSTRACT 

In the numerical integration of orbits by a multistep 
process, it has been suggested that the application of a local 
e r ro r  control may increase the efficiency of the integration 
without any significant loss of accuracy. This study de
velops methods of controlling the local e r ro r  and examines 
the effects of these controls on the integration. It is shown 
that for various orbit types, controlling the local e r ro r  can 
optimize the integration while maintaining the desired 
accuracy. 
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LOCAL ERROR CONTROL AND ITS EFFECTS 

ON THE OPTIMIZATION OF ORBITAL INTEGRATION 


by 
C. E. Velez 

Goddard Spnce Flight Center 

INTRODUCTION 

Many computing systems used to determine the orbits of artificial earth satellites require nu
merical integration. Due to recent advances in the theory of perturbations and the concomitant in
crease in the complexity of the mathematical model, highly efficient integration techniques a re  
required. Such a technique is described in this paper, based on the concept of "local e r ro r  control." 

Consider the orbital equations 

in three space variables, where I X I = ( x2 t ~2 t 2') P is the perturbation function, and p is a con
stant. We assume throughout that P is fairly complicated, SO that the efficiency of the integration 
is proportional to the total number of derivative evaluations. Also, for simplicity, we assume that 
P is independent of the first derivative G, i.e., P = P( t ,  x) .  

The numerical method under consideration is a multistep process, Le., a method that approxi
mates the solution of Equation 1by using formulas of the form 

where h is the stepsize, xi = x ( tot i h )  ,and a i ,  p i  a r e  constants. Formulas of this type define a 
linear k-step method (Reference 1);they are usually derived by integrating a polynomial approxi
mation of the derivative ;;. 

Associated with Equation 2 is a local truncation e r ro r  of the form 

Rn = R ( t , )  = Chpt2x@t2)(c), (3) 

1 




where 5 is contained in [tn-k,t,] ,c is a constant, and p is an integer called the "order" of the 
method, all depending on k, the number of "backpoints" used. 

Soar has suggested (Reference 2) controlling the local e r r o r  by varying the order and stepsize 
while integrating Equation 1with this object: It is clear (for example) that the magnitude of R~ is 
sensitive to variations in p or h. Suppose that during the integration the magnitude of R n  becomes 
insignificant relative to the required accuracy of the calculations being performed. Then increasing 
h or  decreasing p, separately or in combination, may increase integration efficiency without sacri
ficing accuracy. The purpose of this study, then, is to develop automatic methods of controlling 
the magnitude of R n  during integration by varying the parameters p and h, and to examine the effects* 
of these controls on efficiency and accuracy. Before discussing methods of estimating and con
trolling the local error ,  we formulate a commonly used integration model that was used to obtain 
the conclusions given under "Numerical Results.'' 

THE INTEGRATION FORMULAS 

In Equation 2, if  p, # 0, then knowledge of the solution xn is required on both sides of the 
equation and cannot, in general, be explicitly solved. However, equations of this type (closed form) 
have smaller associated truncation e r r o r s  as well as desirable stabilizing characteristics (Ref
erence 3). The well-known predictor-corrector algorithm uses formulas of this type by first com
puting an initial (predicted) approximation of the solution using a similar formula with 8, = 0, then 
using the closed form iteratively until convergence is achieved. It can be shown that for sufficiently 
small h, the successive corrected values obtained by this process converge to the unique solution 
of the closed-form equation, provided that the function being integrated is sufficiently smooth. 

Consider now the predictor-corrector formulas that are derivable from Newton's backward 
difference interpolation polynomial (Reference 1, pp. 291-293-see also Appendix A): 

These a re  the Stormer-Cowell formulas expressed in terms of backward differences. The 
local truncation e r rors  associated with the formulas a r e  given by Equation 3, where p = q t 1 and 

+ ~c = D ~ o r  aq:,. If the parameter q is fixed (and hence the order p), then Equations 4 and 5 can be 
written in the form of Equation 2 if the backward differences a r e  expressed in terms of the 
ordinates Z i .  

'Local error control does not generally yield a quantitative measure of the accumulated error. However, a qualitative control is pos
sible  and in most cases  sufficient. For a discussion on accumulated error estimations, see Reference 1 .  
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In particular, for q = 5 there are the Stormer-Cowell sixth-order formulas: 

h 2  
Q2 xn = 240 [317 - 266Gn-2 + 374Gn-3 - 276zn-4+ 109Gn-5 - 3 Gn-6] , (4)' 

The coefficients in Equations 4' and 5' clearly depend on the choice of order, so that varying 
the order during integration would mean producing a new set of coefficients for each p. Therefore, 
formulas such as Equations 4 and 5 (where variations of the order can be made simply by varying 
the number of terms retained) were used in this study.* Before any of the above formulas could be 
used, a set of "starting" values of the solution must be computed.+ For example, for Equations 4' 
and 5', if  the values xi (and hence Zi), i = 0, 1, - . - ,5 are  known, then Equation 4' could be used 
to obtain a "predicted" value X; (n = 6) and Equation 5' to obtain the successive corrections x6'j , 
j = 1 , 2 , 3 , - - -,until convergence to the same criterion F is achieved, i.e., until 

The process could then be repeated with n = 7, 8, - . 

LOCAL ERROR ESTIMATION 

Any considerations concerning the control of the local e r ror  depend on the capability of ob
taining a reasonable estimate of Equation 3 during the integration. A widely used approximation is 
based on the fact that if  f ( x )  is an n-times continuously differentiable function, then there exists a 
quantity 8, 0 < 8 < 1, such that 

i.e., if AX is sufficiently small, we can approximate a high-order derivative by a high-order dif
ference. In particular, we can write 

*In actual practice, a modification of Equations 4 and 5 known a s  the "summed" form of the integration formulas was used. This modi
fication is formulated in Appendix A. 

+Experimentation indicates that recently developed high-order Runge-Kutta type formulas are particularly suited for such purposes (Ref
erence 4 ) .  
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If suitable predictor-corrector formulas are used, another technique is available: comparing 
the predicted value x R  with the finally accepted "corrected" value x,' . In particular, it can be 
proven (Reference 1) that, for Equations 4 and 5, 

Rn 2 K ( x , , ' = - x ~ )  , (7) 

where K is a constant. This technique is known as Milne's method of estimating the local error .  

LOCAL ERROR C O N T R O L  

Consider now a specific technique which makes it possible to control the magnitude of the local 
e r ro r  during integration by varying parameters p and h. Let T, and T, be tolerances specifying 
upper and lower bounds on the local e r ro r  so that, for any n, the local e r ror  must satisfy 

T, 5 /R,I 5 T I  , where T, 5 T ,  . (8) 

Controlling the local e r ro r  by varying the order can then be accomplished by determining 
whether this condition is satisfied for each value of n; if  for some n, Rn < T ,  then decrease the order; 
if R~ > T , ,  then increase the order. However, varying the order alone is generally not enough for ef
fective control. For  example, if ,  for some n ,  Rn > T, and h is large, it may not be possible to satisfy 
Equation 8 with any p; in which case the stepsize must be decreased. (Also, the danger of numer
ical instability increases considerably with large p; see References 5 and 6.) On the other hand, 
R" < T ,  and p small  would indicate that a larger stepsize could be used. 

Controlling the local e r ro r  by varying both stepsize and order  can be accomplished as follows: 
Let L, and L, be limits specifying the desired upper and lower bounds on the order, i.e., 

L2 5 p 5 L, where L, 5 L, . (9) 

Then, if  at some point during the integration, p > L , ,  decrease the stepsize; i f  p <L,,  increase the 
stepsize. 

In a local-error control so designed, the parameters T,, T z ,  L,, L, completely govern the 
degyee and t ype  of control; i.e., T ,  and T, can be selected so as to effect any degree from no con
trol  to continuous step-by-step control; likewise, L,  and L, can be selected so that the control in
volves varying the order alone, varying the step alone, or  varying both. (For example, if L, = L,, 

the control depends solely on stepsize variations.) 

Changes in stepsize magnitude during integration (unlike changes in the order) a r e  usually hard 
to accomplish, since they need a "memory" of equally spaced points at every step during integra
tion. For this reason a common technique is "halving-doubling," where an increase or  decrease in 
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stepsize is half o r  double the current stepsize. Then increasing the stepsize presents no problem 
if a sufficient number of backpoints a re  retained. Decreasing is usually accomplished by interpo
lation or  by a single-step method. 

OPTIMIZATION OF STEPSIZE 

Restricting the variations of stepsize h by a constant factor does not generally yield "optimal" 
stepsizes;* hence the initial choice of interval could have a substantial effect on the total number 
of integration steps. For example, suppose the halving-doubling method is being used and the order 
is held fixed. If for some n, R~ > T, ,the stepsize must be decreased. Let hop, be the optimum 
(largest) value of h for which Equation 8 is satisfied. It might then happen that h/2 < hop, < h.  But 
in this method, h / 2  would be used, although this would necessitate more integration steps than if 
the optimum stepsize were used. Hence a variation of h that would better approximate its optimum 
value is desirable. One technique available (see Reference 7 for details and applications in the 
case of single-step methods) is to compute the stepsize using the local-error estimate, i.e., letting 
u be the "allowable" local e r r o r  for each step, where T, 5 u 5 T,. Variations in h can then be com
puted from the relationship between u and R~ c h p t 2  X ( P + ~ )  (6): 

so that, if 5 < Rn ,the stepsize is decreased; if  R~ < u the stepsize is increased; the variation being 
approximately optimal with respect to the choice of u. 

OPTIMIZATION OF ORDER 

Varying the order by a constant factor, like varying the stepsize, need not yield the "optimal" 
order. For example, suppose that a variable-order, constant-step control is being used and the 
order is varied by *I. If, for some n ,  IRn I < T,, the order must be decreased. Let pop, be the opti
mum (smallest) value of p for which Equation 8 is satisfied. Then the following situation could efist; 

In this method, p - 1 would be used, although this would result in more calculations than are 
required at  the optimum order. Also, using a variable-step control in addition to varying the order 
may cause: 

*The largest stepsize that al lows a prescribed local error at a given point. 
tThe smallest order that al lows a prescribed local error. 
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in which case the stepsize would be increased if p,, were used. One method to obtain the optimum 
order is to test the local e r r o r  for various orders until the optimum is established. For example, 
if the local e r r o r  estimate used is given by Equation 6, then ch2Vp Sn can be tested for various p 

until the smallest value satisfying Equation 8 is found. 

GENERAL EFFICIENCY CONSIDERATIONS 

This section discusses some possible effects of the above mentioned controls on the efficiency 
of any integration, which will generally depend on attaining the following objectives: 

A. Minimizing the number of integration steps, 

B. Minimizing the number of corrector iterations required at each step, 

C. 	 Minimizing other computational efforts required by the integration formulas being used, 
such as retaining only the significant terms in Equations 4 or 5 during integration, 

D. 	 Minimizing the effort and time involved in computations to control the local error,  such as 
producing the required "memory" when changing the stepsize. 

Three types of control a r e  now considered. 

1. A variable-order, fixed-step control: 

Since varying the order involves only varying the number of terms retained, this control has 
little effect on attaining A. Equation 7 however, expressing the relationship between the local 
e r r o r  and the T'predicted-corrected''difference, indicates that controlling the local e r r o r  may sub
stantially affect the total number of corrector iterations. In particular, an increase in order at 
some point during integration where the local e r r o r  is increasing could minimize any increase in 
the number of required iterations. This control also has an obvious effect on attaining C, and also 
that given a stepsize, the order required to satisfy a given criterion on the local e r ror  is automat
ically selected. 

2. A fixed-order, variable-step control: 

This control affects the number of corrector iterations for the same reason as control 1. It 
evidently affects the attainment of A or  D, SO one of them must be sacrificed. The gain in efficiency 
from larger stepsizes must be weighed against the cost in changing the stepsize. Furthermore, 
there a re  the two methods for varying the stepsize: halving-doubling, and step computation using 
the local-error estimate. In both cases the necessary "memory" could be obtained by interpolation, 
but in the second method all the backpoints must be computed when decreasing and when increasing 
the stepsize, as compared with opposed half, o r  none, for the first method. However, the second 
method may be the more effective of the two in minimizing the number of integration steps. This 
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control has the further advantage that, given an order, it automatically selects the stepsize (possibly 
optimum) required to satisfy a given local e r r o r  criterion. 

3. A variable-order, variable-step control: 

The control combines the effects of controls 1 and 2. It has one possible disadvantage: in 
allowing the order to vary before changing the step, it may cause smaller stepsizes, thus opposing 
objective A. But this control has one clear advantage: it automatically selects both the stepsize 
and order required to satisfy a given local error criterion. 

EFFECTIVE ERROR CONTROL IN ORBITAL INTEGRATION 

In general, the effectiveness of a local e r r o r  control during the integration of a particular orbit 
depends on the degree and rate of change of the derivative ;(P+,) ( 5 )  (and hence the local error),  
during a revolution for a fixed p and h. This change is governed by the orbital parameters a (the 
semi-major axis) and e (the eccentricity) (Reference 2). In particular, for orbits with eccentricity 
near zero, the local e r ror  variation will probably be small over a revolution, and as the eccentricity 
becomes bounded away from zero, this variation becomes more pronounced. Moreover, the larger 
the semi-major axis for a particular satellite, the slower the rate of change of the derivative. 

Suppose that during the computation of a particular orbit, some local e r ror  criterion is to be 
satisfied over the entire range of integration, which may involve many revolutions. That is, sup
pose that the local e r r o r  is to be bounded from above, so as to restrict (at least qualitatively) the 
propagation of truncation error .  Suppose also that the integration method used is of some fixed 
order (as is generally the case when formulas such as Equations 4' and 5' are used), and that the 
stepsize is to be specified. The e r r o r  criterion could then be satisfied, without serious loss of ef
ficiency, by integration over a single revolution with various stepsizes-choosing the largest step-
size that satisfies the criterion over the whole revolution. For orbits with e > 0, this process 
could yield the optimal stepsize for the given order. On the other hand, for orbits with e 2 E > 0, 
the stepsize selected in this manner would mean bounding the local e r r o r  at its maximum value 
(e.g., at perigee), and could cause needless computation where the local e r r o r  is smaller o r  at its 
minimum (e. g., near apogee). 

Consider the effects of a continuous variable-step control during integration. In both cases 
cited above (i.e., e 0, or  e ? E > 0) an initial stepsize (possibly optimum) satisfying the local er
ror criterion would be computed automatically; furthermore, the stepsize would vary according to 
variations in the derivative. The numerical results show that in both cases, under suitable condi
tions, such a control has a considerable effect on the efficiency. In particular, if a sufficiently large 
range ( T I ,  T, ) is used in Equation 8 (so that the local e r ror  is allowed to range between these two 
limits before any interval modification is performed), the gains in efficiency due to the larger step-
sizes will overshadow any loss due to changing the stepsize. 

If, in addition to the above, the order to be used could be specified (as it generally can when 
formulas such as Equations 4 or  5 a re  used), then it may be possible to obtain an optimal stepsize 
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(or stepsizes)-order combination by integrating over a single revolution with various orders and 
letting the stepsize vary during the revolution. In particular, we could find that order which-
together with a continuous step modification-gives the most efficient integration. Examples of 
such a procedure will be given in the numerical results. 

Finally, consider a continuous variable-order control. Again, since we are assuming that the 
number of evaluations of the derivative governs the overall efficiency, the effects of this control on 
C (in the previous section), and its possible adverse effects on A when used in conjunction with a 
variable step control, make this control ineffective from this point of view. If, however, a fixed-
step method is used, the effect of this control on the number of corrector iterations can result in 
considerable efficiency gains. 

N U M E R I C A L  R E S U L T S  

This section discusses the results obtained by applying the various local e r ro r  controls dur
ing the integration of three selected orbit types. Appendix B formulates the actual equations of 
motion (Equation 1);a description of the computer program can be found in Reference 8. 

For the sake of simplicity, instead of an approximation for Rn (given by Equation 6) in control
ling the error ,  a bound on the local e r ro r  given by 

was used, where Vk-* is the last backward difference retained in the computations (see Appendix A). 
Since p = k + 1, therefore 

Thus using Un gives the same qualitative results as using Rn, and the same quantitative results 
could be obtained by using Rn with a smaller TI. 

The number of derivative evaluations for each integration was obtained by multiplying the total 
number of steps taken by the average number of predictor-corrector iterations. 

The e r ro r  estimates were obtained by integrating Equation 1 with P = 0, and comparing the 
results with the Kepler solution. Since the perturbation function P generally has only a small effect 
on the accumulation of error ,  the e r ro r  estimated in this manner can be considered close to the 
actual error .  

All  computations were performed on the Univac 1108 computer in double precision. The fol
lowing units were used: 

Unit of length = 6378.388 km, 
Unit of time = 13.447 min. 
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Table 1 gives the results obtained by integrating the orbits with formulas of orders 7, 9, 11, 
and 13. These integrations were carried out with various stepsizes, where in each case the step-
size was increased until Un failed to satisfy the inequality 

over the entire range of integration (chosen arbitrarily as  4000 minutes). The table gives only the 
last 2 stepsizes tested, indicating the largest stepsize that passed the criterion, and the first step-
size failed. 

Table 1 

Fixed-Order, Fixed-Step Control. 

T, = 0.5 x 6 = 0.1 x lo- ' '  (predictor-corrector tolerance) 

Semi- No. of 

Axis, a e (min) Evaluations E r r o r  

6.7 0.003 7 5 .O 798 4 x 10-10 
7.0* 569 4 10-9 

9 15.0 262 3 10-9 
17.0* 231  8 10-9 

11 24 .O 160 9 x 10-10 
26.0* 147 2 10-9 

13 22.0 173 3 x 10-12 
24.0* 158 9 x 10-11 

1.15 0.075 7 0.4 9998 8 x 10-8 
0.5* 7998 4 x 1 0 - 7  

9 0.9 444 0 2 x 1 0 - 7  

1.o* 3996 5 x 1 0 - 7  

11 1.2 3327 5 x 1 0 - 8  
1.3* 3070 1 x 1 0 - 7  

13 1.5 3081 1x 1 0 - 9  
1.6* 3043 1x 10-8 

8.5 0.878 7 0.30 13344 1x 1 0 - 7  
0.35* 11483 4 x 1 0 - 7  

9 0.40 10005 4 x 1 0 - 8  
0.45* 8902 1x 1 0 - 7  

11 0.30 13340 9 x10-11 
0.35* 11433 4 x10- '0  

13 0.20 19992 4 x10- '2  
0.25* 15992 3 x10- '2  

major 
Eccentricity Order  Stepsize Derivative Estimated 

*Integration with this stepsize failed the criterion (12) for some n. 
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The results in Table 1suggest the following observations: 

For a given local e r r o r  criterion, increasing the order does not generally imply a larger 
"allowable" stepsize. Since the propagation of e r r o r  (both truncation and round-off) influences the 
"smoothness" of thd higher-order differences (and hence our local e r ror  estimate), this behavior 
is to be expected, both from the inaccuracies in the differences and from an unstable p and h com
bination. Also, accuracy increases with the higher orders. Reference 6 includes a table demon
strating this behavior (for the case e ? 0). 

The stepsizes resulting from the local e r r o r  criterion during the integrations correspond to 
bounding the local e r r o r  at its maximum (at perigee), although the local e r r o r  for most of the in
tegration, particularly for the case e = 0.87, was considerably smaller than the upper bound. 

Table 2 gives the results obtained by integrating the test orbits with a variable-step control. 
In particular, the stepsize was varied during each integration, forcing Un to satisfy 

for  all n. The stepsize-modification techniques used were halving-doubling and the optimum-step 
computation where the "allowable" local e r r o r  is designated by T ;  Le., the step computation is 
given by 

Except for those cases indicated by an asterisk, all integrations were performed with an initial 
stepsize (chosen arbitrarily) of 0.42 min = 1/25 internal units. The sixth column indicates the 
stepsize or  stepsize range that occurred during the multistep integration as a result of the local 
e r r o r  control. 

Comparing the corresponding results in Tables 1 and 2 leads to the following observations: 

For orbits of low eccentricity, (0.003, 0.075), the stepsizes selected in Table 2 as a result of 
the variable-step control a re  comparable with the "optimum" stepsizes found by trial and e r r o r  in 
Table 1. 

Table 2 indicates by asterisks those cases in which the initial step was selected as a result of 
foreknowledge of the "optimum" step (the initial step used was exactly half the stepsize indicated). 
These cases demonstrate the dependence of the efficiency on the initial choice of stepsize in the 
halving-doubling type of step modification. 

For orbits of high eccentricity (0.87), the larger stepsizes effected significant gains in efficiency 
Stepsize modification causes no loss in efficiency, as shown by the results concerning the degree of 
control in Table 2. The apparent loss in accuracy, (especially for the higher orders) was expected 
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Table 2 

Fixed-Order, Variable-Step Control. 

T ,  = 0.5 x T, = 0.5 x lo-'' S = 0.1 x 

Type of No. of 
%P Derivative 

Modification Evaluations 
~ 

' 

H/D 1.7 2377 
O P T  . l  x 10-10 5 A 744 
O P T  1x 10-11 3 .O 1320 

H/D 6.7 590 
H/D* 14.0 2 8 1  
OPT 1x 10-10 12.4 322 
O P T  1x Po-" 8 A 4 7 1  

H/D 13A 291  
H/D* 23.0 167 
O P T  1x 10-10 20.1 196 
OPT 1 x 10-11 15.1 260 

H/D 13.4 - 26.9 174 
H/D* 23.0 165 
OPT 1 x10- '0  19.8 - 30.0 155 
OPT 1 x 1 0 - 1 1  13.9 - 26.8 159 

H/D 0.42 9516 
O P T  1x 10-10 0.42 9516 
OPT 1x 10-11 0.42 9516 

H/D 0.42 9514 
OPT 1 x10- '0  0.61 6514 
OPT 1x 1 0 - 1 '  0.42 9490 

H/D 0.84 4781  
OPT 1 x10-10  1.04 3849 
OPT 1 x 1 0 - 1 1  0.78 5131 

H/D 0.84 - 1.68 4257 
OPT 1 x10- '0  1.20 3314 
OPT 1 x 1 0 - 1 1  0.96 4171 

H/D 0.2 -3.4 3180 
O P T  1 x10- '0  0.2 -9.5 2415 
OPT 1 x 1 0 - ' 1  0.1 -6.9 3131 

H/D 0.2-6.7 1374 
OPT 1 x10- '0  0.2 - 19.0 1137 

I OPT 1 x 1 0 - ' 1  0.2 - 14.6 1331  

~ H/D 0.2 - 13.4 875 
OPT 1 x10- '0  0.2 -29.1 788 
O P T  1 x 1 0 - 1 '  0.2 - 14.0 907 

H/D 0.2 -26.9 710 
OPT 1 x10- '0  0.2 -22.4 6 6 1  
O P T  1 x10-1 '  0.1 -25.6 775 

1 
Estimated 

E r r o r  

2 x10 -13  
6 x l O - "  
1 x10-1,  

2 x10-12 
1 x 1 0 - 9  
5 x10- '0  
1 x 1 0 - 1 '  

2 x10- '2  
6 x l O - "  
1 x10- '0  
7 x10 - ' 2  

I 

6 x l O - '  
5 x10- '2  
8 x l O - '  
7 x 1 0 - 9  

1 x 1 0 - 7  
1 x 1 0 - 7  
1 x 1 0 - 7  

2 x10 - ' 0  
6 x l O - '  
2 x10- '0  

1 x 1 0 - 9  
8 x i O - '  

4 x 1 0 - l 0  

4 x 1 0 - 7  
8 x l O - "  
5 x 1 0 - ' 0  

7 x ~ o - '  

2 x 1 0 - 8  
3 x 1 0 - 9  

7 x 1 0 - 8  
7 x 1 0 - 8  
1 x 1 0 - 9  

6 X ~ O - ~ 
2 x 1 0 - 8  
5 x 1 0 - 9  

1 x ~ o - ~  
3 x 1 0 - 8  
1 x 1 0 - 8  
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since the e r r o r  control bounded the e r r o r  from below as well as from above, whereas for  the cor
responding results in Table 1the local e r r o r  was insignificant for  most of the integration. 

In all cases, the optimum-step computation-type interval modification yielded fewer derivative 
evaluations than halving-doubling, with little or  no loss of accuracy. The parameter magnitude af
fected the integration as expected: the small value increased the accuracy at the cost of smaller 
stepsizes. 

In all cases, automatic selection of a stepsize to satisfy the local e r r o r  criterion for  the given 
order is clearly an advantage. Also, the "best" order (Le., the one yielding the fewest derivative 
evaluations) to use with the variable-step control may not be the same as the best order to use for 
a fixed-order, fixed-step integration. 

Table 3 gives the results obtained by integrating the test orbits with a variable-order, variable-
step control. The order was allowed to vary between the limits L, and L, before any step modifica
tion was effected. In all cases, the "smallest" order satisfying Equation 12 in any given stepsize 
was used. All integrations were performed with an initial stepsize of 0.42 mins. and an initial order 
of L, + (L, - L, )/2, forcing the initial order p to be in the interval ( L ,  , L, 1. Columns 5 and 6 indicate 
the stepsize and order ranges that occurred during integration as a result of the e r ror  control. 

Table 3 

Variable-Order ,V a r i a b l e 4tep Control. 

T, = 0.5 T, = 0.5 1 0 - l ~  6 = 0.1 10- l~  ff = o..i 

Type of No. ofEccentricity =, - = 2  Step Derivative 
Estimated 

e Modification Eva1uations Error  

0.003 7 - 13 	 H/D 8 1184 9 1 0 - l ~  

OPT 10 454 5 10-13 

9 - 13 	 H/D 6.7 9 588 2 x10-'2 
OPT 18.4 11 217 5 x10-11 

11 - 15 	 H/D 13.4 11 289 2 x 1 0 - ' 2  
OPT 24.6 11 - 15 175 2 x 1 0 - 9  

0.075 7 - 13 	 H/D 0.42 8 - 10 9513 9 x 10-10 
OPT 0 -84 10 4767 5 x 1 0 - 9  

9 - 13 	 H/D 0.42 - 0.84 9 - 10 4818 6 x 

OPT 1.04 11 3849 8 x l o - '  
11- 15 	 H/D 0 -84 12 - 13  4751 1 x10-'0 

OPT 1.2 13 3314 8 x lo-'' 

0.87 7 - 13 	 H/D 0.2 - 3.3 7 - 13 2744 4 x10-9  
OPT 0.2 - 10.8 7 - 13 2269 1 x 10-8 

9 - 13 	 H/D 0.2 - 13.4 9 - 13 1002 6 x10K8 
OPT 0.2 - 13.2 9 - 13 1067 3 x 10-8 

11- 15 	 H/D 0.1 - 26.8 11- 15 665 3 x 1 0 - 7  
OPT 0.1 - 20.0 11- 15 742 2 x10-7 
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Comparing Table 3 with Tables 1 and 2 suggests the following observations: 

For orbits of low eccentricity, in Table 3, the stepsizes attained for the various orders selected 
were comparable to the stepsizes obtained for the corresponding orders  in Table 2. 

In all cases, (especially e = 0.87), allowing the order to vary before changing the stepsize re
sulted in a smaller "mean" stepsize and thus a larger number of derivative evaluations; so that i f  
the "best" order to use with a variable step control is known, this control gives a more efficient 
integration than the variable-order, variable-step control. . 

In all cases, automatic selection of a stepsize and order to satisfy the given local e r r o r  crite
rion is clearly an advantage. 

Table 4 shows the effects of a variable-order control alone on the average number of predictor-
corrector iterations (and hence the total number of derivative evaluations) and on the total error.  
The order or  order range obtained as a result of the control is indicated. 

Table 4 

Variable-Order, Fixed-Step and Fixed-Order ,Fixed-Step Control. 

T ,  = 0.5 x lo - '  T, = 0.5 x 

Mode Order 

6 = 0.1 x 10-10 

No. of of p-c 
Semi-
major  

Axis, a 

Eccentricity 
e Stepsize 

Steps Iterations 

Estimated 
E r r o r  

6.7 0.003 25.0 154 1-00 1 
25 .O 158 I .80 4 x 10-6 
25.0 156 1.oo 2 io- '  

1.15 0 .O 75 1.2 332 7 1.oo 5 x 10-8 
1.2 3331 1.94 1 10-5 
1.2 3329 1.28 2 x 10-6 

8.5 0.87 0.5 8000 1.00 2 x 10-8 
0.5 7998 1.01 5 x 10-6 

Average Number 

Vary order  
Fixed order  
Fixed order  

Vary order  
Fixed order  
Fixed order  

Vary order  
Fixed order  

11 
7 
9 

11 
7 
9 

5 - 1 0  
7 

~~ 

These results show the advantages of automatic selection of order, from the predictor-corrector 
point of view and from the accumulated e r r o r  that results from local e r r o r  control. 

Finally, consider the effects of varying the "allowable range'' (TI,T,) in the local e r r o r  con
trol. In general, the smaller the interval (T,,T, ) is made, the greater is the frequency of interval 
and/or order modification. It would seem (particularly in the case of a variable-step control), that 
efficiency gains due to the larger stepsizes due to the control could be offset by the cost in chang
ing the stepsize-should such changes occur too frequently during integration. 

Table 5 gives the results of integrating one of the test orbits with a fixed T, and various values 
for T, (approaching TIas a limiting value). A variable-step control (halving-doubling) was used, 
and the variations in the stepsize, along with the number of step changes and computation time (in 
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Table 5 

Variable-Step Control-Range Modification 

T, = 0.5 x lo- '  6 = 0.1 x 10-l' 

T *  

5 x 10-16. 
5 10-14 
5 x 10-1, 
1 x 10-11 
2 x 10-1' 

2.5 x 10-l '  
3 x lo-"* 

Stepsize No. of Computation 
(Range) Derivative Time 

") Evaluations 

0.42 - 6.7 1810 0.094 
0.42 - 6.7 1309 0.073 
0.42 - 13.4 886 0.059 
0.42 - 13.4 849 0.058 
0.42 - 13.4 832 0.260 
0.42 - 26.9 856 0.810 
0.42 - 26.9 892 2.10* 

Estimated 
E r r o r  

7 x 10-8 
7 x 10-8 
6 x 

9 x 10-8 
1 
1 x 1 0 - ~  
1 

minutes) are presented for each integration. An asterisk indicates that integration in which a step-
size modification occurred approximately at each step, rendering the e r ro r  control completely in
effective, since the entire computation time was governed by the backpoint computation. 

These results show that as T, approaches T ,  there a re  efficiency gains at first, because of the 
larger stepsizes, but, as the range (T,,T, ) becomes smaller, these gains a re  offset by the cost in 
changing the step. Finally, as expected, the diminishing range causes the control to be completely 
ineffective. Note, however, that the equations of motion (see Appendix B) a re  simpler than what 
may be used in actual practice, and in a more realistic situation, a smaller interval (T,,T, ) may 
be possible before the computing time is completely governed by the frequency of step modification. 

It may be admitted that only a particular model of the perturbation function P has been used. 
However, variations in this function (such as the inclusion of higher-order gravitational effects) 
should not affect the general qualitative behavior of the local error .  

CONCLUSIONS 

The problem of achieving an efficient and accurate orbital integration by a multistep process, 
using the concept of controlling the local e r ro r  during integration, has been studied. It has been 
shown that during the integration, the parameters p and h can be used to control the local e r ro r  in 
such a way that the efficiency of the process is improved with no significant loss in accuracy. 

In particular, i f  a sufficiently large range ( T , ,  T, ) in the local e r ro r  is allowed, and an order 
p is given, a variable-step control can automatically yield a good approximation of the optimal 
initial stepsize (with respect to the given order) and can significantly improve the efficiency of the 
process by varying this step during integration. Moreover, i f  a good approximation of the "best" 
order to use with a variable-step, fixed-order control is known, this control effects the most 
efficient integration, as compared with the other controls considered. On the other hand, a 
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variable-order, variable-step control automatically determines both the order and step required 
to satisfy the given local e r r o r  criterion, and also gives a reasonably efficient integration. Finally, 
even a variable-order, fixed-step control, although it does not minimize the number of integration 
steps, can give a more e5ficient integration than no control at all,by minimizing the number of 
predictor-corrector iterations. 

We have considered only a "local" optimization problem, in the sense that optimal stepsize is 
defined on a step-by-step basis as being the largest stepsize satisfying a given local e r r o r  criterion 
at any given point. A more significant consideration would be optimal stepsize (and/or order) dis
tribution oker the entire range of integration, defined on the basis of a criterion imposed on the ac
cumulated truncation error .  D. Morrison, under some restrictive conditions (among others, limi
tation to a single differential equation), considers the problem of optimizing the mesh distribution 
(Reference 9). A basic difficulty in applying such techniques is the requirement that a "memory" 
of equally spaced points be available at each step during the integration. One solution worth con
sidering is the integration of divided-difference interpolation polynomials (which do not require 
equally spaced points), for use in numerical integration. 

Goddard Space Flight Center 
National Aeronautics and Space Administration 

Greenbelt, Maryland, January 2 2 ,  1968 
3 11-07-21-01-51 
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Appendix A 

Derivation of  the “Summed” Form of  Integration Formulas 

By integrating Newton’s backward difference interpolation polynomial, the following multistep 
formulas for  the numerical integration of Equation 1 can be derived,* (including formulas for the 
velocity in the event that P contains k): 

Equations for ;;-,x 

Equations for :- k 

where the coefficients D ,  (T*, 7, y*  a r e  given by the following recurrence relationships: letting 

D o  = 1 ,  

*Reference 1, pp. 192-195 and 291-293. 
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and 

It has been established (References 1 and 10) that an algebraic equivalent of Equations A1 
through A4, known as the "summed" form of the integration formulas, considerably reduces the 
propagation of round-off error .  Formally, one can obtain this equation modification by applying 
the inverse difference operators V-l,T2 defined by V-l V = I ,  V2 = I ,  (I the identity), to both 
sides of these equations. In particular, applying V-2  to both sides of Equations A1 and A2 gives 

Defining Ism,IISm by 

gives 
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and since 

and 

therefore 

Likewise for  Equations A3 and A4, applying the operator V-'  to both sides gives 

Using the definition of ISm as above gives 

Corrector: km+l I h[y,' ISm+ (y,' ty:) Gm+' t y; nZm+l+ . .. + Yk* Ok-l xm+l] (A8).. . 

These a r e  the "summed" forms of the integration formulas. (For details concerning the computa
tional usage of these formulas, see Reference 8.) 

Note, again, that Equations Al,  A2 and A5, A6 a re  algebraically equivalent, so that for any 
fixed k, any solution of Al,  A2 is a solution of A5, A6, and conversely. In particular, the local 
truncation e r ro r s  associated with these formulas are the same. A similar equivalence exists for 
Equations A3, A4, and AT, A8. 
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Appendix B 

Equations of  Motion 

The equations of motion used to obtain the numerical results a re  given by 

where Fl + F 2  = P (see Equation l), and x = (x, y ,  z), R = 1x1 = (x' t y 2  + z ~ ) ~ / ~,pis a constant, F1 
is the perturbation due to the non-sphericity of the earth, and F2 is the p e r k +  ation due to drag. 
-

Fl = (Fix, F l y ,  F 1 , )  is given by 


K 
F l x  = R6 

[JR' ( 5 s  - 1) f Hz( 7s - 3)  f (-63s' + 42s - 3 ) ]  , 

F l y  = E [ J R 2 ( 5 s - 1 ) t H z ( 7 s - 3 ) + ~ ( - 6 3 s 2 + 4 2 s - 3 ) ]  ,K 
R6 

where s = ( z / R ) ' ;  and J ,  H, and K are  the second, third, and fourth harmonics of the earth's po
-

tential field, respectively. F, is of the form 

where V r  is the relative velocity of the satellite; p is the atmospheric density at the satellite po
sition; and A, M and C, a r e  the cross-sectional area, mass, and drag coefficient of the satellite re
spectively. The actual numerical values of these constants that were used to obtain the results can 
be found in Reference 8. 
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